
The Specification and Modeling of Computer Security

John McLean

Center for High Assurance Computer Systems
Naval Research Laboratory

Washington, D.C. 20375

Computer security models are specifications designed, among other things, to limit the
damage caused by Trojan Horse programs such as computer viruses. Recent work in
such models has revealed limitations of the widely accepted model of Bell and LaPadula.
This paper provides an introduction to computer security modeling in general, the Bell
and LaPadula model in particular, and the limitations of the model. Many of the issues
raised are of interest not simply to the security community, but for the software
specification community as a whole. We then construct a framework for security models
that address these limitations. The result is a model that not only better addresses
government security policies, but nongovernment security policies as well.

1. Introduction

Since proving programs correct by formal means is expensive, where feasible at all,
such an approach to assurance is cost effective in only a few areas. One of the most
important of these is the area of security where the cost of a mistake can be billions of
dollars and, at least in the national security arena, human life. Unfortunately, formally
proving that a program is secure is especially hard. It’s not that formal proofs about
security are intrinsically more difficult than proofs about other properties, but rather that
the concept of security, itself, is harder to explicate formally. For this reason, there has
been a great deal of focus on formally explicating security by constructing formal models
of security.

If we assume the existence of a set of objects, which can be intuitively viewed as
consisting of information receptacles, and a set of subjects, which can be intuitively
viewed as consisting of agents who can operate on objects in various ways, security is the
problem of appropriately governing subjects’ access to objects. Although identification,
authentication, and auditing requirements all fall within the security arena, our concern in
this paper is with requirements that restrict the access a legitimate user can have to files.
To render the problem nontrivial, we assume that it is not the case that every subject is
permitted to access every object.

Access requirements fall into two categories, Discretionary Access Control (DAC)
and Mandatory Access Control (MAC). DAC restricts access rights that are based, e. g.,
on file ownership. The most important property of such access rights is that they can be
passed to other users. For example, any right I have to a file based solely on the fact that
I own the file, I can pass to another user. As a result, such DAC protection is limited
since it is subject to a Trojan Horse attack where I am tricked into executing a program
that, without my knowledge, passes my rights on to another user. The most widely
known examples of Trojan Horse programs are computer viruses.

- 2 -

MAC provides access restrictions that are not subject to user discretion. As such,
MAC limits the damage a Trojan Horse can cause. For example, if we assume the
existence of a (partially) ordered set of security levels, such that each subject and each
object is assigned a level, and the MAC restriction that subjects assigned to a level can-
not read objects assigned to a higher level, then even if we can trick a high-level subject
into executing a Trojan Horse program, the program will be unable to pass a low-level
subject access rights to a high-level object. In the national security arena, an example of
such a set of levels is the familiar hierarchy of {top secret, secret, confidential,
unclassified}, where top secret > secret > confidential > unclassified. The level assigned
a subject is called the subject’s clearance, and the level assigned an object is called the
object’s classification. However, MAC, perhaps under a different name, appears in other
arenas as well. For example, medical employees have the right to view patient records,
but cannot pass this right on to nonmedical employees. Similarly, advisers cannot pass
the right to look at student grades on to other students and payroll officers cannot pass the
right to look at employee salaries on to other employees.

In the national security arena, the most widely-used model is that of David Bell and
Leonard LaPadula [2]. This model, known as the Bell and LaPadula Model (BLP),
serves as the backbone of the National Computer Security Center’s evaluation process
for trusted computer systems. However, although widely used, BLP has limitations. For
example, it has little to say about systems in which users may change security levels of
themselves or their files. Yet, such changes are often necessary in real-world systems.
Further, it is inadequate for expressing requirements that certain operations cannot be
performed by a single individual operating alone. Such n-person rules, or "dual-custody"
policies, are contained in government security policies, e. g., policies governing missile
launchings, and are an important part of industrial security [3].

This paper describes computer security models, in general, and BLP, in particular.
Although we address DAC briefly at the end of the paper, our main topic is MAC, and
although our primary focus is the arena of national security, the issues raised are relevant
to any setting in which MAC-like restrictions arise. Further, we shall see that security
provides a fruitful research area for those with a general interest in software specification
since some of the most difficult issues that arise in specifying security have analogues in
other domains. We shall examine the limitations of BLP and see how they can be
remedied by a framework of models. This framework will help render BLP more useful
to those interested in industrial security.

2. Computer Security Specifications and Models

The task of computer security, as distinct from security in general, is to assure that
when we computerize an information system, and hence provide users with greater pro-
cessing power and less human supervision, we do not introduce new security threats to
the system. We are not concerned with espionage, e. g., in the sense of a user viewing a
file he is entitled to see, memorizing its contents, and reproducing the file from memory,
or with sabotage or integrity violations, e. g., in the sense of a person maliciously altering
a file he is entitled to change. Nor are we concerned with unauthorized users breaking
into the system nor denial of service attacks where, e. g., authorized users disable a sys-
tem by performing authorized operations that reduce system response to an unacceptable
level. Our concern is limited to assuring that valid users and programs are not permitted

- 3 -

to view data they are not authorized to view and that programs are not permitted to distri-
bute in an unauthorized manner data they are authorized to access. These two com-
ponents of security, not being able to view data classified above one’s authorized level
and not being able to copy data from one level to a lower level, are known as simple
security and the *-property, respectively. They play an integral part in traditional expli-
cations of MAC security.

One problem with simple security and the *-property is that they really constitute a
possible implementation of security, called a reference monitor, rather than an abstract
specification that all secure systems must satisfy. By concerning themselves with partic-
ular controls over files inside the computer rather than limiting themselves to the relation
between input and output, they make it harder to reason about the requirements, them-
selves, and prejudice the programmer against alternative implementations which may be
better [8]. A more abstract specification would ignore system internals and deal directly
with the system’s input/output relation, requiring, e. g., that output to a user with a low
security level does not enable such a user to infer properties of input from users of a high
security level. The best known formalization of this constraint requires that high-level
inputs do not interfere with low-level outputs [6, 11]. One problem with this approach is
that it is limited to systems where high-level output is not generated from low-level
input. Hence, it cannot take into account the fact that some systems raise the security
level of their input simply by the processing they perform on the input. A second prob-
lem is that in nondeterministic systems high-level input cannot simply be restricted from
interfering with the possibility of a low-level output occurring, it must be restricted from
interfering with the probability that it occurs. For example, a system in which high-level
input can significantly reduce the probability of a low-level output occurring can pass
significant information even if the high-level input cannot render the low-level output
impossible. However, the most serious problem with this approach is that, in general, it
is too strong: in most systems we are willing to tolerate high-level input having some
effect on low-level output, e. g., with respect to system response, operating system mes-
sages concerning available storage, device status, etc. Disallowing any such information
flow may lead to performance degradation we are unwilling to accept.

By using the concepts of simple security and the *-property we hope to be more
selective about the sorts of effects that we consider impermissible. We then leave as a
separate task (called a covert channel analysis) the job of showing that a malicious pro-
gram that transfers information via system response, operating system messages, etc.
cannot transfer information at a rapid enough rate to be of concern.

It should be noted that the issues we are dealing with concerning the advantages and
disadvantages of specification abstraction arise not only in specifications of security.
Consider a mailing system, for example. Ideally, we may want our specification to
require that all messages sent are delivered within some time interval t , but when we see
the cost of such a system, we may settle for a specification that makes delivery time a
function, f , of system load. No matter how precisely we specify f , however, if our
specification contains no implementation suggestions, only the most talented programmer
will be able to build a system that convincingly satisfies our specification. As a
compromise, we may develop a system model of operation and show that the model sys-
tem satisfies our abstract requirements within acceptable limits. The programmer is then
presented the model as an implementation guideline. Whereas the initial abstract

- 4 -

specification is analogous to noninterference, the model is analogous to the role of simple
security and the *-property. The move from an abstract specification to an
implementation-oriented model is motivated by the fact that an abstract specification of
our exact requirements provides too little implementation guidance for the programmer.

A more serious problem with simple security and the *-property is that not all expli-
cations of security agree exactly on what they mean. With respect to simple security,
should a user whose clearance is conf idential be able to copy the contents of a file
classified secret to another file classified secret ? That is, should we regard such an
operation as a case of the conf idential user viewing a secret file? Explications of
simple security differ in their answer to this question depending on the how fine-grained
we assume is our knowledge of process behavior, that is, whether we can differentiate
between reading for the sake of viewing and reading for the sake of copying. If we
regard any read access as a viewing of a file, then the major explications agree on the
correct formulation of simple security .1 [7] Rather than trying to distinguish between
different ways of reading a file, we adopt this view.

It may seem that we could side-step the issue by treating the viewing of a file as
copying a file to a screen or printer. Simple security then becomes a special case of the
* −property if we mandate that the classification of an output device for the purposes of
an operation is the minimum of some basic classification of that device and the clearance
of the user in control of the device at the time of the operation.2 A problem with this
approach is that if a program can read a file, it can communicate the file’s contents to a
user without having to write to an output device or another file. For example, suppose F
contains our opening move as white in an upcoming chess tournament, and our opponent
knows that we always play either p-k4 or p-q4. Consider the following program:

CHESS:
open F for read
while F="p-k4" do end
close F

A user can obtain our opening move by starting CHESS and passively waiting for the
system prompt. Our move is "p-q4" if and only if CHESS successfully terminates.
Hence, to prevent invalid information flow, we must prevent all accesses above one’s
security level. The * −property , by itself, is insufficient.

Even if we could eliminate the need for simple security , there is the problem that
explications of the *-property differ [2, 6]. For example, if we assume that processes
have memory, we may not wish to allow a process that has read a secret file to down-
grade itself and write to a confidential file without first being "sanitized". Alternatively,
we may choose to permit a process to read a secret file and write a confidential file even
simultaneously, but prohibit information flow from the former to the latter. As in the
case of simple security , the difference between the two approaches reflects different
hhhhhhhhhhhhhhh
1. This equivalence must be taken with a grain of salt. The important issue is whether a system
that conforms to one formulation of simple security conforms to another. To answer this question,
one needs to consider not just the two explications, but the mappings from the system to the expli-
cations as well.
2. Such an approach is taken in the Military Message System Model (MMS) [10].

- 5 -

assumptions about how fine-grained our knowledge of process behavior is.

For example, assume that we have two secret files S1 and S2, two confidential files
C1 and C2, and a program P. If P reads S1, we may, for ease of implementation, simply
prevent P from writing to C1. However, if we examine P more closely, we may discover
that we are being overly restrictive. For example, P may be of the following program:

DONOTHING:
open S1 for read
open C1 for write
close S1,C1

or more realistically, the program:

SIMCOPY:
open S1,C1 for read
open S2,C2 for write
copy S1 to S2
copy C1 to C2
close S1,S2,C1,C2

The trouble with allowing such programs is that it is hard to draw the line between
them and programs that allow harmful information flow from high-level files to low-level
files. Even if we can examine code, it is not always clear whether a program passes
information from one file to another. The same statement can leak information or not,
depending on the environment. For example, the command if A=0 then B:=0 passes
information from A and B only if neither A nor B has been previously set to 0 in the
program by an unconditional assignment. In general, the problem of detecting all and
only nonsecure information flows is undecidable [4].

A solution to this problem is to take a coarse-grained approach to the * −property
and prevent nonsecure information flow by limiting program access to files. A reference
monitor is a software module that enforces such limitations. Since access restrictions are
necessary in any case, as demonstrated by our earlier program, CHESS , it makes sense to
use this approach to enforce information flow as well. BLP is the epitome of a model
that embodies this approach.

3. The Bell and LaPadula Model

In this section we develop a formal model for simple security and the * −property
that is identical to BLP in all essentials as far as MAC is concerned, but simpler. We
assume the existence of a finite set of subjects S , consisting of system users and perhaps,
programs; a finite set of objects O , consisting of system files (possibly including pro-
grams); the standard lattice of security levels L ; and a finite set of access modes A =
{read, write}, the set of modes in which an element of S can have access to an element of
O .
Subjects who have read access to an object, can read it and copy it; those who have

- 6 -

write access can modify it. To edit an object requires both types of accesses.

A system is a state machine such that each state v =(b ,f) is an element of
V =(B ×F), where

B is P (S ×O ×A), the set of all possible current access sets such that a subject s has
access a to an object o if and only if (s ,o ,a)∈b , and

F is L S ×L O , the set of all possible ordered pairs of functions (f s ,f o) such that f s
gives the security level (clearance) associated with each subject, and f o gives the
security level (classification) associated with each object.

The set of requests (to change an element of a system state) is denoted by R . The state
transition function, T : R ×V → V moves the system from one state to another: a request
r is issued in state v that moves the system from v to its successor. A system
Σ(V ,T ,vinit) is the finite state machine consisting of states V , transition function T , and
initial state vinit . A state v is reachable in a system Σ(V ,T ,vinit) if and only if there is a
sequence <(r 0,v 0), . . . ,(rn ,vn)> such that v 0 = vinit , vn =v , and for all 0≤i <n ,
T (ri ,vi)=vi +1. Note that for any system, vinit is trivially reachable.

A state is simple secure if and only if for every subject that has read access to an
object in the state, the clearance of the subject dominates (in the lattice) the classification
of the object. More formally, (b ,f) is simple secure if and only if
(s ,x ,read)∈b → f s (s)≥ f o (x). A state is * −secure if and only if no subject has read
access to an object x and write access to an object y in the state unless the classification
of y dominates the classification of x . More formally, (b,f) is *-secure if and only if
((s,x,read) ∈ b /\ (s,y,write) ∈ b) → f o (y)≥ f o (x). A system is secure if and only if all of
its reachable states are simple secure and * −secure .

To apply BLP to a real system, we must appropriately map the model’s primitive
access types, read and write , to the system. Ideally, what counts as an appropriate map-
ping is one where a file cannot affect a program’s behavior unless the program has read
access to it and a file cannot be affected by a program unless the program has write
access to it. Determining these mappings is not trivial. Program behavior can be affected
in subtle ways, as for example, in the program CHESS described above. If we took all
such effects into account, BLP would be too stringent for most applications. What is
done in practice is to classify a set of operations as read’s and write’s and then use covert
channel analysis to assess the possible damage that may result from the classification.
Hence, there is always a give and take in mapping a model to a system and performing
the accompanying covert channel analysis. The more information flow we can rule out
categorically by our mapping of the model to the system, the less flexible our system is
but the less information flow we have to examine for potential damage during covert
channel analysis.

Further, we must appropriately map the model’s subjects and objects to the system
so that information is not improperly stored in program variables or system variables, e.
g., the instruction counter. For example, assume that F 1 contains our chess opening as
described above and consider the following two programs:

- 7 -

PASS1(F1: file, F2: file)
open F1 for read
read A from F1
close F1
open F2 for write
write A to F2
close F2

PASS2(F1: file, F2: file)
open F1 for read
if F1= "p-k4"

then close F1
open F2 for write
write "p-k4" to F2

else close F1
open F2 for write
write "p-q4" to F2

close F2

Both PASS 1 and PASS 2 obviously pass information from F 1 to F 2 even though neither
violates the * −property as explicated in our version of BLP.3 The most natural way to
prevent such flow violations is to restrict file opening to the beginning of programs, res-
trict file closing to the end of programs, and disallow global and static variables.

Given these assumptions, it is straightforward to show that if a file can affect a pro-
gram only if the program has read access to it and a program can affect a file only if the
program has write access to it, then a system with only * −secure states is a special case
of a system that does not allow invalid information flow. One way to see this is to move
to a neutral framework that does not have machine states. We can do this by considering
sequences of operations, called traces [1, 12]. We represent the sequence consisting of
the operation x followed by the operation y by x.y , and we use Q , R , S , and T as vari-
ables ranging over such (possibly empty) sequences. All variables are assumed to be
universally quantified unless preceded by an occurrence of the existential quantifier, ii

i
c.

For simplicity, we assume that security levels do not change, using the statement f1 ≥ f2
to assert that the classification of file f 1 dominates that of f 2. If we ignore the compli-
cations that arise from permitting the closing of files and represent the operation of a user
s opening a file f for access φ as open(s,f,φφ), the * −secure state formulation of the
* −property is captured by two simple axioms that specify when a trace satisfies the
predicate * −s , which intuitively says that the trace satisfies the * −property :
hhhhhhhhhhhhhhh
3. Bell and LaPadula’s explication of the *-property is more complicated, but no more satisfacto-
ry. They include in their formulation a current security level for each subject above which the
subject cannot read and below which it cannot write. However, there is no restriction on changing
this level in their model, so the flow violation given above is not blocked. Even in the Multics in-
terpretation that accompanies their model, the only restriction on changing this function is that it
does not violate the *-property, which neither version of PASS does. For example, PASS1 can
lower its current security level after reading F1 and before reading F2.

- 8 -

(1) *-s(T.open(s,f1,r).R.open(s,f2,w).S) →→ f2≥≥f1

(2) *-s(T.open(s,f2,w).R.open(s,f1,r).S) →→ f2≥f1

To capture the information flow version of * −security , we assume that any program that
passes information from a file f 1 to another file f 2 on behalf of user s is represented by
the operation cp(s,f1,f2). Further, we assume that we can execute cp(s,f1,f2) only if f 1
has been opened for read and f 2 for write by s . Again, ignoring the closing of files, this
requirement is specified using the predicate L , which denotes the set of legal traces:

(3) L(T.cp(s,f1,f2)) →→
(ii
i
cR)(ii

i
cS)(ii

i
cQ)(T=R.open(s,f1,r).S.open(s,f2,w).Q \/

T=R.open(s,f2,w).S.open(s,f1,r).Q)

The requirement that information not flow down is then captured by the assertion:

(4) *-s(T.cp(s,f1,f2)) →→ f2≥≥f1

It is easy to see that (1), (2), and (3) together imply (4) for all legal system operations, i.
e., that the * −secure state version of * −security implies the information flow version.

4. General Security Models: Paradigm Lost

To examine BLP in more detail, let us call security as defined by BLP
BLP −security , to distinguish it from access security , the informal security requirement
BLP purports formally to specify. The most notable theorem known about
BLP −security is called the "Basic Security Theorem" (BST), which gives necessary and
sufficient conditions for a system starting in a secure state to never reach a nonsecure
state.

Theorem: A system Σ(V ,T ,vinit) is BLP −secure if and only if vinit is a BLP −secure
state and T satisfies (1) and (2) below:

(1) If T (r ,v)=v* where v =(b ,f) and v* =(b* ,f *), then for each (s ,o ,read)∈b* −b ,
f *s (s)≥ f *o (o), and for each (s ,o ,read)∈b such that f *s (s)≥/ f *o (o), (s ,o ,x)∈/b* .

(2) If T (r ,v)=v* where v =(b ,f) and v* =(b* ,f *), then for each
{(s ,x ,read),(s ,y ,write)}⊆b* −b , f *o (y)≥ f *o (x); and for each
{(s ,x ,read),(s ,y ,write)}⊆b such that f *o (y)≥/ f *o (x),
{(s ,x ,read),(s ,y ,write)}⊆/b* .

The theorem states that a system with a secure initial state is secure if and only if
whenever the system moves from one state to a new state no new accesses are added that
would be nonsecure with respect to the new state’s security level functions and no
accesses from the original state are retained that would be nonsecure with respect to the
new state’s security level functions. Bell and LaPadula seem simply to have intended for
this theorem to establish an interesting property of BLP −security . We shall disregard
the question of whether the results of the BST are interesting and consider a stronger
claim: the accepted response of the computer security community to the BST was that it
shows that BLP −security completely explicates access security .4 [13] In other words,
hhhhhhhhhhhhhhh
4. In [2] there is also a set of operations, called "rules", that satisfy further properties besides sim-

- 9 -

the BST was interpreted as establishing that access security = BLP −security .

The justification for this opinion was never articulated. However, the position can
be made plausible by considering an analogy [14]. In the 1930’s logicians were strug-
gling to explicate the informal concept, computability . The first explication to be offered
was Church’s suggestion of recursiveness , followed soon thereafter by Turing’s sugges-
tion of Turing computability . What gives credence to both suggestions is that recursive-
ness and Turing computability are coextensive. Hence, we have two different explica-
tions of an informal concept that pick out the same class of functions.

Returning to access security , what BLP offers us is an explication in terms of the
notion of a restricted (BLP −secure) state. What would add credence to this explication
is a coextensive explication in terms of the notion of a restricted state transition function.
On the face of it, this is what the BST provides. It seems to offer a set of transition res-
trictions adequate for explicating access security and shows that the class of state
machines that satisfy these restrictions is the same class of machines that satisfy the con-
ditions of being BLP −secure . If this view were correct, the BST would certainly
succeed in adding credence to the claim that BLP −security = security , though the view
that the BST proves that BLP −security = security would be overstated.

Unfortunately, even this moderate view of the BST is untenable. The confidence it
gives us that BLP −security = security fades when we realize that an analogous theorem
holds for obviously incorrect explications of security, e. g., one in which subjects are per-
mitted to read only information classified higher than their security level [13]. The BST
is transparent with respect to the concept of secure state used in our explication and
would hold no matter what restrictions (or lack of restrictions) we placed on such states.

The failure of the BST to justify BLP does not demonstrate that no justification is
forthcoming. We may try to construct our own justification by constructing a definition
of security that truly is based on the notion of a secure transition rather than a
secure state [14]. To this end, call a transition function T simple secure if and only if
whenever T (r ,v)=v* then the following three conditions are met:

(1) if (s ,o ,read)∈b* −b , then f s (s)≥ f o (o), and f = f * ;

(2) if f s (s)≠ f *s (s) then (i) b does not contain any triples of the form (s ,o ,read) where
f *s (s)≥/ f o (o), and (ii) f o = f *o and b =b* ; and

(3) if f o (o)≠ f *o (o) then (i) b does not contain any triples of the form (s ,o ,read)
where f s (s)≥/ f *o (o), and (ii) f s = f *s and b =b* .

A transition function T is * −secure if and only if whenever T (r ,v)=v* then the follow-
ing two conditions are met:

(1) if {(s,x,read),(s,y,write)}⊆b* and {(s,x,read),(s,y,write)}⊆/b, then f o (y)≥ f o (x) and
f = f * ;

hhhhhhhhhhhhhhh
ple security and the *-property. However, these rules are Multics-dependent and are presented
merely as one possible implementation of the model. If there are further constraints besides sim-
ple security and the *-property that all such rule sets must enforce, these should be made explicit
and placed on the same level as simple security and the *-property. In general, sets of rules are
hard to analyze for flaws since they are complicated by system-dependent information. We need a
simple abstraction with which we can validate various rule sets [14].

- 10 -

(2) if f o (y)≠ f *o (y) then (i) b does not contain any subsets of the form
{(s ,x ,read),(s ,y ,write)} where f *o (y)≥/ f *o (x) or of the form
{(s ,y ,read),(s ,x ,write)} where f *o (x)≥/ f *o (y), and (ii) b* =b .

A transition function is secure if and only if it is simple secure and * −secure . Our
definition states that a transition function is secure if and only if whenever it changes an
element of a state, the change cannot violate security with respect to the other elements
of the state and these other elements cannot be changed during the transition. This
differs from the conditions of the BST by not allowing a single transition to change, e. g.,
both a state’s current accesse set and security level functions. Since a secure transition
from a state v to v* allows only one element of v to change and that that element can be
changed only in ways that preserve state security with respect to v , it is straightforward
to prove the following theorem [14]:

Theorem: A system is BLP −secure if its initial state is BLP −secure and its transition
function is secure.

Unfortunately, the converse is false. A system may be BLP −secure yet not have a
secure transition function. As an example, consider the system Z whose initial state is
BLP −secure and which has only one type of transition [14]:

When a subject s requests any type of access to an object o , every subject and
object in the system is downgraded to the lowest possible level and the access is
recorded in the current access set b .

It is easy to see that system Z ’s transition always leads to a BLP −secure state, and
hence, that system Z is BLP −secure . However, Z ’s transition function does not meet
our definition of a secure transition. Since, Z permits anyone to access anything, BLP
obviously fails to capture access security . Further, it should be clear that no adequate
definition of access security can be based entirely on the notion of a secure state. We
can define simple security and the * −property in terms of a secure state since object
contents are not part of our model and so we do not have to restrict how they can change
from state to state.5 However, since security levels are part of our model, we do need to
say how they can change from state to state.

5. General Security Models: Paradigm Regained

In this section we develop a set of frameworks for MAC models that allow changes
in security levels. A single model is insufficient since policies on changing security lev-
els are intrinsically application-specific: the adequacy of the trade-off between flexibility
and security inherent in such a policy can be judged only in light of the policy’s intended
application. To bring order to the resulting proliferation of models, we need theoretical
frameworks that allow us to compare models and construct new models from old ones.

A framework is determined by S , O , L , and A , and a model within a framework is
determined by an ordered pair C =(cs ,co) such that cs is a total function from S to P (S)
and co is a total function from O to P (S). Intuitively, cs (x) and co (y) are the set of sub-
jects who can change the security levels of subject x and object y , respectively [15].
hhhhhhhhhhhhhhh
5. Though as we have seen, we need to include transition restrictions when determining when a
program requires read and write access to an object.

- 11 -

Our notion of a system is the same as above except that our transition function is
now a function T : S ×R ×V → V where a subject s issues a request r in state v that
moves the system from state v to a new state. A transition function is transition secure
if and only if each transition T (s ,r ,v)=v* , where v =(b ,f) and v* =(b* ,f *), is such that
(1) for all x ∈S if f *s (x)≠ f s (x), then s ∈cs (x), and (2) for all y ∈O if f *o (y)≠ f o (y),
then s ∈co (y). In other words, a transition can change the security level of a subject x or
object y only if the subject executing the transition is in cs (x) or co (y), respectively.

A system is secure only if (1) all its reachable states are simple secure and
* −secure , and (2) its transition function is transition secure . All models in a frame-
work share this security policy, though the consequences of the policy differ from model
to model depending on the particular model’s function pair C . A model is the set of
secure systems that share S , O , L , A , and C . A f ramework is the set of models that
share S , O , L , and A .

Note that our security policy gives necessary, but not sufficient, conditions for a
system to be secure . Hence, different models within a framework do not contradict one
another. This would not be the case if our policy followed BLP in giving sufficient con-
ditions for security as well. It allows us to construct new models from old ones.6 In fact
it is possible to define model construction operations ∩, ∪, and ′ that form a Boolean
Algebra [15]. This gives us a natural partial ordering of the set of models within a frame-
work, viz. , M 1 ≤ M 2 if and only if M 1∩M 2=M 1. For example, if we consider a frame-
work where S ={x ,y } and O ={z }, we have the following ordering among models that do
not allow the clearance of a subject to change:

{x ,y }

{x } {y }

{}

The top policy says that either x or y can change z ’s classification; the leftmost policy on
the second row says that only x can change z ’s classification; the rightmost policy of that
row is the analogous policy for y ; and the bottom policy says that z ’s classification can-
not be changed. Although the distinction between the two policies on the second row can
be useful when we are considering specific individuals, there are times we may wish to
ignore differences between policies that can be eliminated by renaming and treat all poli-
cies that appear on a row as equivalent. This can be done formally by slightly modifying
the definition of ≤ [15].

A given security model corresponds to a model in a framework if and only if the set
of systems that is nonsecure by the criteria of the former is the set of systems that is non-
secure by the criteria of the latter. Given this sense of correspondence and sets S , O , L ,
and A , BLP corresponds to that element of the framework for which cs (x) = co (y) = S
for all x ∈S and y ∈O . It is the least stringent of the framework’s models. The most
hhhhhhhhhhhhhhh
6. The fact that models do not contradict one another is important. Consider a model M1 that
says a system is secure if and only if C1 and a model M2 that says a system is secure if and only if
C2. Unless C1 and C2 are equivalent the model that says a system is secure if and only if C1 /\ C2
has no useful logical relation to M1 and M2. All three models contradict each other.

- 12 -

stringent is BLP+, BLP supplemented by tranquility, the restriction that security levels
cannot change7 and corresponds to the framework model for which cs (x) = co (y) = ∅
for all x ∈S and y ∈O . An intermediate position is one where a subject sso ∈S acts as
system security officer and is in charge of all changes to security levels.8 Such a system
corresponds to the framework model in which for all x ∈S and y ∈O ,
cs (x) = co (y) ={sso }. It is easy to see that BLP+ ≤ MMS ≤ BLP. In fact, BLP and BLP+

are the top and bottom elements, respectively, of the Boolean Algebra formed by a
framework. Hence, as we move toward the top of the algebra, the models become less
stringent, and in general, M 1 ≤ M 2 if any system that satisfies M 1 satisfies M 2 as well.

Since this way of modeling the ability to change security levels places all the theory
of Boolean Algebra at our disposal for comparing and constructing models, we should be
reluctant to forsake it. Nevertheless, it has the limitation that it does not provide us the
ability to formulate n-person rules on our system. Such rules are widespread in govern-
ment and industry. For example, we may require that the classification of an object can
be changed only with the approval of both the owner of the object and the system secu-
rity officer. This requirement can be implemented in several ways. One possibility is to
require that the classification of an object may be changed only if the owner of the object
and the system security officer concurrently execute a special program that changes the
classification. Another is to require that the classification of an object may be changed
only if the owner of the object executes a program that requests a change and the system
security officer then executes a second program that grants the request. On a more
abstract level, however, it is worthwhile being able to ignore implementation differences
and focus solely on the concept of an action being executed by several people jointly,
whether concurrently or sequentially. The abstract formulation provides a criterion of
correctness for the lower level rules.

To this end we consider frameworks whose subject set has a particular structure
[15]. We replace our set of subjects, S , by P (S)−{∅}, the set of nonempty subsets of S ,
which we denote by S and whose elements we denote by s.9 In our definition of a system,
we replace B by B = P (S ×O ×A), and f s by f s , a function from S to L such that f s (s)
is the greatest lower bound (in L) of {f s ({s }): s∈s}. For example, if x ∈S and y ∈S with
security levels of secret and top secret, respectively, then {x}∈S with security level
secret, {y}∈S with security level top secret, and {x,y}∈S with security level secret. If
{({x },o 1,write), ({x ,y },o 2,write)}⊆b , then x has write access to o 1, and x and y have
joint write access to o 2. The latter access signifies that x and y can change o 2, but only
if they do so by operating together.

Given these changes to the framework, our definition of simple security remains
unchanged except for being in terms of our new subject set S, i. e., a state is
simple secure if and only if (s ,x ,read)∈b →→ f s (s)≥ f o (x). Our definition of the
* −property , however, requires more substantial modification. We now say that a state is
* −secure if and only if for any subjects s 1,s 2 and objects x ,y if (s 1,x ,read)∈b and
hhhhhhhhhhhhhhh
7. See, for example, the SeaView model [5].
8. See, for example, the MMS model [10].
9. What follows can be applied to the set of objects in an analogous manner if we wish to capture
the notion of being able to operate on an object only conjointly with operations on another object,
as for example, in double-entry bookkeeping.

- 13 -

(s 2,y ,write)∈b and f o (y)≥/ f o (x), then s 1 ∩ s 2 = ∅. In other words, we must guard
against a subject violating the * −property by virtue not only of its singleton accesses,
but also its joint accesses.

To formulate transition restrictions we redefine our notion of a state transition and
replace T : S ×R ×V →V with the function T : S ×R ×V →V , and we replace cs and co by
the functions cs and co , respectively, where each new function’s range is P (S) instead of
P (S). Since the security level of the subject {x ,y } is determined by the security levels
of {x } and {y }, we need concern ourselves only with how the security levels of singleton
subjects can change. Hence, the domain of cs becomes {{x }: {x }∈S } instead of S . Our
definition of transition security is as before except modified to reflect these changes, i.
e., a transition function is transition secure if and only if each transition T (s ,r ,v)=v* ,
where v =(b ,f) and v* =(b* ,f *), is such that (1) for all {x }∈S if f *s ({x })≠f s ({x }), then
s ∈cs ({x }), and (2) for all y ∈O if f *o (y)≠ f o (y), then s ∈co (y).

Each model in the sense of the previous section yields a unique model in the current
sense since the security levels of all joint subjects is determined by the levels of the indi-
vidual member subjects. It is easy to verify that if an instance of our new framework
allows only singleton subjects, then the restrictions it places on a subject {s } is identical
to the restrictions placed on s by our previous framework. Further, the same restrictions
that apply to a subject s in the previous framework now apply to any subject that con-
tains s in the current framework. Our current model is more selective, however, in the
sense that, for example, a subject may be denied joint write access to an object o which
it could have single write access to because the subject it wishes to share the access with
may have read access to an object of higher classification.

Though our treatment of joint access is straightforward and has the advantage that
the models of a framework form a Boolean Algebra, it has the drawback that it is not
clear that all the instances of a framework make sense. For example, consider a system
that contains two users x and y . The set of subjects in our new model will be
{{x ,y },{x },{y }}. Hence, it is possible to have co (w)={{x }} for some object w . Some
may regard as nonsensical a policy where x can change w ’s security level, but is unable
to change it operating in conjunction with y . If we wish to rule out such systems as
bizarre, we can either treat such models as merely theoretical elements necessary to
round out our framework or we can exclude them by appropriately restricting the range
of C so that, e. g., {x }∈co (w) only if {x ,y }∈co (w). The advantage of so restricting C
is that we have no policies that are nonsensical. The disadvantage is that the domain of
the components of C no longer form a Boolean Algebra. However, it is straightforward
to prove that the possible domains for each component do form a distributive lattice
under the set theoretic operations ∩, and ∪ [15].

6. Discretionary Security

Though we have so far formally considered solely the notion of MAC, DAC can
also be handled in our framework and is useful for models that capture the notion of lim-
iting access for reasons of privacy and "need to know". Since DAC is a useful addition
to government security and serves as one pillar of industrial security, it is worthwhile
examining it briefly here.

- 14 -

In BLP, discretionary security is captured by a discretionary access matrix which,
for any subject-object pair, lists the type of accesses that the subject may have to the
object. This approach has the disadvantage of being extremely coarse grained, especially
in the industrial world, where one does not want to give a subject blanket rights to alter
an object in any way, but rather only the right to alter an object in a set of specified ways
[3]. In such a setting discretionary access is the right to execute certain programs on a
specified object.10 Ignoring the order of program arguments, it can be viewed as a func-
tion D : S ×O 1×O 2 → Boolean where D (s ,o 1,o 2) = true if and only if s has the right to
execute program o 1 on o 2.

The advantage of the present framework for such access restrictions is that it allows
us to capture the requirement that a user can access an object via a program, but only in
conjunction with other users. Such restrictions form the second pillar of security for
industrial purposes [3]. Hence, one may wish to say, at an abstract level, that the action
of reimbursement for an order can only be performed by a receiving agent and an
accountant operating jointly to make sure that nothing is payed for that has not been
delivered. The details of modeling such policies are beyond the scope of this paper, but
it is plain to see that the resulting framework will support the comparison and construc-
tion of DAC policies in a way similar to our comparison and construction of MAC poli-
cies.

7. Conclusion

We have seen that BLP has limitations stemming from its state-based-only approach
to security. It is interesting to note that the response of the computer security community
to these limitations displays differing views of BLP’s role in computer security.11 Those
who formulated BLP seem to view it primarily as a research tool developed to explore
the properties of one possible explication of security . However, those who evaluate sys-
tems for adequate MAC enforcement seem to view BLP as correctly capturing our infor-
mal concept of security. Since the limitations described in this paper are problems only
from the latter point of view, the reaction to the community resembled Thomas Kuhn’s
descriptions of paradigm shifts in science where two communities fail to understand each
other because of differing assumptions [9].

No matter which view is correct, there can be not doubt that our framework for trad-
itional MAC security models and our framework for security models that contain n-
person rules form a more useful setting for performing research in computer security and
for evaluating the security of systems. Both frameworks support the rigorous comparison
of models and the systematic creation of new models from existing ones.

The next step is to extend the framework to cover input/output models of security
and models that permit the components of C to change as well. For example, who grants
or revokes permission for a user to change an object’s security level? In the mean time,
both frameworks should support future research in security modeling by suggesting new
hhhhhhhhhhhhhhh
10. This is the approach taken, for example, in the MMS [10] and SeaView [5].
11. A representative sample of this response is contained in Computer Security Forum 5, 18 (July
5, 1986), ed. Ted Lee for Arpanet distribution. System Z was originally presented in issue 14
(June 22, 1986) of the Forum, and additional responses appeared in issues 25 (September 23,
1986), 26 (October 5, 1986), 27-29 (all October 16, 1986), and 30-31 (all December 9, 1986).

- 15 -

models to be considered and the relations between these models and existing ones. For
example, if we discover a model M is too lax for our purposes, we can conclude that any
model M* such that M* ≥ M will also be too lax. Similarly if M is too restrictive, no
model M* ≤ M need be considered. By creating and experimenting with such models,
we will create a tool box of models that can serve a variety of purposes.

Acknowledgments

I am grateful to Thor Bestul, Dick Kemmerer, Carl Landwehr, Teresa Lunt, Cather-
ine Meadows, and Jeannette Wing for their comments on various sections of this paper.

References

1. W. Bartussek and D. L. Parnas, ‘‘Using Traces To Write Abstract Specifications For
Software Modules,’’ Report TR 77-012, University of North Carolina, Chapel Hill,
N. C., December 1977.

2. D. E. Bell and L. J. LaPadula, ‘‘Secure Computer System: Unified Exposition and
Multics Interpretation,’’ MTR-2997, MITRE Corp., Bedford, MA, March, 1976.
Available as NTIS AD A023 588.

3. D. D. Clark and D. R. Wilson, ‘‘A Comparison of Commercial and Military Secu-
rity Policies,’’ in Proc. 1987 IEEE Symposium on Security and Privacy, pp. 184-
194, IEEE Computer Society Press, April, 1987.

4. D. E. Denning, Cryptography and Data Security, Addison-Wesley, Reading, 1982.

5. D. E. Denning, T. F. Lunt, R. R. Schell, M. Heckman, and W. Shockley, ‘‘The
SeaView Formal Security Policy Model,’’ SRI Interim Report A003, SRI Interna-
tional, 1987.

6. J. A. Goguen and J. Meseguer, ‘‘Security Policies and Security Models,’’ in Proc.
1982 IEEE Symposium on Security and Privacy, pp. 11-20, IEEE Computer Society
Press, April, 1982.

7. J. T. Haigh, ‘‘A Comparison of Formal Security Models,’’ in Proc. 7th National
Computer Security Conference, pp. 88-119, Gaithersburg, MD., Sept. 1984.

8. C. Heitmeyer and J. McLean, ‘‘Abstract Requirements: A New Approach and Its
Application,’’ IEEE Transactions on Software Engineering, vol. SE-9, no. 5, pp.
580-589, September 1983.

9. T. Kuhn, The Structure of Scientific Revolutions, University of Chicago Press, Chi-
cago, 1970.

10. C. Landwehr, C. Heitmeyer, and J. McLean, ‘‘A Security Model for Military Mes-
sage Systems,’’ ACM Transactions on Computer Systems, vol. 2, no. 3, pp. 198-222,
August 1984.

11. D. McCullough, ‘‘Noninterference and the Composability of Security Properties,’’
in Proc. 1988 IEEE Symposium on Security and Privacy, IEEE Computer Society
Press, April 1988.

12. J. McLean, ‘‘A Formal Method for the Abstract Specification of Software,’’ J.
ACM, vol. 31, no. 3, pp. 600-627, July 1984.

- 16 -

13. J. McLean, ‘‘A Comment on the ’Basic Security Theorem’ of Bell and LaPadula,’’
Information Processing Letters, vol. 20, no. 2, pp. 67-70, February 1985.

14. J. McLean, ‘‘Reasoning about Security Models,’’ in Proc. 1987 IEEE Symposium
on Security and Privacy, pp. 123-131, IEEE Computer Society Press, April 1987.
Also in Advances in Computer System Security, vol. III, ed. R. Turn, Artech House,
Dedham, MA, 1988.

15. J. McLean, ‘‘The Algebra of Security,’’ in Proc. 1988 IEEE Symposium on Security
and Privacy, IEEE Computer Society Press, April 1988.

